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Characterization of resolution and uniqueness in
crosswell direct-arrival traveltime tomography
using the Fourier projection slice theorem

James W. Rector IlI* and John K. Washbourne*

ABSTRACT

The process of acquiring a crosswell seismic direct-
arrival traveltime data set can be approximated by a
series of truncated plane-wave projections through an
interwell slowness field. Using this approximation, the
resolution and uniqueness of crosswell direct-arrival
traveltime tomograms can be characterized by invok-
ing the Fourier projection slice theorem, which states
that a plane-wave projection through an object consti-
tutes a slice of the object’s spatial spectrum.

The limited vertical aperture of a crosswell survey
introduces a small amount of nonuniqueness into the
reconstructed tomogram by truncating the plane-wave
projection. By contrast, the limitations on angular
aperture have a significant effect on resolution. The
reconstructed tomogram is smeared primarily along
the limiting projection angles, with the amount of
smearing dependent upon the well spacing and the

angular aperture. The amount of smearing was found
to be inversely proportional to tan A, where A¢ is the
angular aperture illuminating a sector of the interwell
plane. Consequently, the amount of smearing can be
large where the angular aperture becomes small, such
as at the top and bottom of the tomogram. For
interwell sectors illuminated by large angular aper-
tures, Fresnel zone effects will generally be the limit-
ing factor in crosswell tomogram resolution. However,
in some circumstances, angular aperture effects may
control the tomogram resolution.

The effects of angular aperture and direct-arrival
Fresnel zones produce tomograms with spatial resolu-
tion that is dependent upon the well spacing. This
study indicates that direct-arrival traveltime tomogra-
phy will not usually produce tomograms with substan-
tially greater resolution than surface seismic tech-
niques for normal oil and gas well spacings.

INTRODUCTION

In the past ten years, there has been an extensive amount
of research and field study related to direct-arrival traveltime
tomography for crosswell geometries (Justice et al. 1989,
Bregman et al. 1989a). It has been known for many years
(Mersereau and Oppenheim, 1974) that any band-limited
object can be reconstructed perfectly from projections,
provided that the projections illuminate the object from all
angles. Projection reconstruction imaging is responsible for
the development of medical tomography methods such as
the CAT scan and has motivated much of the initial research
into crosswell tomography for reservoir monitoring and
reservoir characterization.

For the typical crosswell geometry (with vertical bore-
holes), direct-arrival traveltime tomography produces inter-

well velocity reconstructions (tomograms) that must contend
with a limited aperture of raypath angles that traverse a
particular sector of the interwell plane. In simple terms,
limited angular aperture means that certain frequencies of
the interwell 2-D spatial spectrum are not illuminated (Hard-
age, 1992). Although most recent discussions of traveltime
tomography resolution have dealt with the Fresnel zone
effects caused by the limited temporal bandwidth of the
seismic data (e.g., Schuster and Quintus-Bosz, 1993), sev-
eral investigators such as Menke (1984) and Bregman et al.
(1989) have investigated the effects of limited angular aper-
ture on the resolution and uniqueness of direct-arrival trav-
eltime tomography. Menke (1984) found that the resolution
was dependent upon the angular survey aperture and that for
most crosswell survey geometries, horizontal resolution was
less than vertical resolution. In addition to the effect of
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Resolution of Crosswell Tomography

angular aperture on resolution, Bregman et al. (1989b) found
that the limited aperture of the crosswell geometry created
large-scale velocity ambiguities in the crosswell tomogram.

In this paper, we use the Fourier projection slice theorem
to separate the effects of limited angular aperture from the
effects of what we will term projection truncation, or effects
introduced by bounded source and receiver positions, in
crosswell direct-arrival traveltime tomography. We find that
angular aperture affects resolution, and projection truncation
influences the variation in the reconstructed interwell image.
We quantify the constraints that angular aperture limitations
place on the potential resolution that can be obtained with
crosswell direct-arrival traveltime tomography. We find that
the resolution depends on angular aperture and well spacing,
and that the resolution changes for different locations within
the interwell plane.
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THE FOURIER PROJECTION SLICE THEOREM AND THE
CROSSWELL GEOMETRY

The process of transmitting a plane wave through a 2-D
object, g (x, z), can be described by the projection operator
p¢(R) where

Pe(R) = j g(R cos & — ¢ sin ¢,

R sin ¢ + ¢ cos &) ds. 1)

R is the axis onto which the projection is made, ¢ is the axis

perpendicular to R, and ¢ is the angle that the R-axis makes
with the z-axis.
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FiG. 1. Crosswell direct-arrival raypaths sorted as a series of projections.
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Let P, (p) be the 1-D Fourier transform of the projection
operator and G(k,, k,) be the 2-D Fourier transform of the
object, where &, is the horizontal wavenumber and &, is the
vertical wavenumber. Then the Fourier projection slice
theorem (Mersereau and Oppenheim, 1974) states that

Py(p) = G(p cos &, p sin ¢). )]

Depth (% total vertical apeturs)

@ 1 .2 .3 .4 .5

In other words, the Fourier transform of the projection
operator constitutes a ‘‘slice’” of the 2-D Fourier transform
of the object, where the ‘‘slice’’ makes an angle ¢ with
respect to the k, axis. By taking many such slices (i.e.,
projections) at small angular increments through the object,
a representation of the 2-D Fourier transform of the object
can be constructed. Provided the object spectrum is band-
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FiG. 2. Minimum projection width as a function of position within the interwell region.
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F16. 3. Back-projected slowness image from a constant velocity model, where the constant velocity is equal to one.
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limited, the object can be reconstructed perfectly from the
projections through the process of ‘‘back-projection” (Wor-
thington, 1984).

The direct-arrival traveltimes from multiple source-
receiver pairs in a crosswell survey can be thought of as a
truncated projection of a plane wave onto the interwell
slowness field. Each common offset gather (where offset is
defined as the vertical source-receiver separation) consti-
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tutes a truncated projection, where the limits of the projec-
tion are dependent on the minimum and maximum source
and receiver positions and the source-receiver offset. Con-
sequently, as shown in Figure 1, any point in the interwell
region can be thought of as being illuminated by a series of
truncated projections, with the range of projection angles
dictated by the angular aperture of the survey and the
location of the point within the interwell region.

AMPLITUDE

.54 .56 58 68

AMPLITUDE

(510 W15 528 (525 .53

—45,

ax = 1. The vertical and horizontal axes are plotted as a fraction of

vertical aperture and well spacing, respectively. The initial impulse had unit amplitude.
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EFFECTS OF PROJECTION TRUNCATION

To characterize the effects of truncated projections, we
consider a uniform crosswell survey between two vertical
boreholes. Sources and receivers are assumed to be de-
ployed continuously over a length H of the source and
receiver boreholes. The well separation is W. A single
truncated projection, p guunc(R), can be written in terms of
the untruncated projection, Po(R), as

Poirunc(R) = py(R) Rect (R/AR), 3)
where
AR =H cos & — W sin |¢], (tan &< H/W), (4)

and Rect (R) is the rectangle or boxcar function defined in
Bracewell (1982),

Rect (R} =1 if |R| < 0.5
Rect (R) = 0.5 if |R] = 0.5
Rect (R) = 0 if |R| > 0.5.

Taking the 1-D Fourier transform of equation (3) we
obtain:

Ptbtrunc(p) = AR sinc (ARP)*Ptb(P), (5)

where sinc (R) = sin mR/mwR and #* denotes convolution.
Invoking the projection slice theorem, we can see that for an
individual projection, truncation leaks energy into different p
values. In terms of the 2-D spectrum of the interwell region,
the truncated projection leaks spectral energy along the line
k, = k, tan . As in conventional signal processing appli-
cations, the leakage can be reduced through techniques such
as tapered windowing. However, some amount of spectral
leakage will always be present, particularly when the pro-
jection width goes to zero. Figure 2 shows the minimum
projection width as a function of position within the interwell

c)

28

region, assuming continuous sampling and a 1:1 survey
geometry. The zones with a small projection width will have
the most spectral leakage and therefore the greatest ambigu-
ity in the reconstructed image. Consequently, projection
truncation can be interpreted as a smoothing or whitening
filter applied to the 2-D spectrum, which increases the
variation of the reconstructed 2-D image, but does not affect
resolution.

We can evaluate the effects of projection truncation on the
reconstructed image by examining the back projection of a
constant slowness model, g(x, z) = 1. The projection of a
constant background object is again a constant, and the 1-D
Fourier transform of the truncated projection operator is:

P ytrunc (P) = AR sinc (ARp). ©)

Figure 3 shows the inverted slowness tomogram resulting
from truncated projections through a constant slowness
model. The velocity values have the most variation in the
center of the image, where the minimum projection widths
intersect. The magnitude of the deviation from the constant
slowness initial model is quite small (less than .01 percent),
suggesting that projection truncation does not significantly
affect the accuracy of the velocities obtained with direct-
arrival traveltime tomography.

EFFECTS OF LIMITED ANGULAR APERTURE ON
RESOLUTION

It is well known that the limited angular aperture in
direct-arrival raypaths leads to a decrease in resolution of
the tomographically reconstructed interwell image (Menke,
1984). Using the Fourier projection slice theorem, we can
quantify the resolution in terms of the spatial impulse
response, also known as the point-spread function, of a
limited aperture (but untruncated) projection operator. For
the crosswell geometry shown in Figure 2, the angular
dependence of the projection operator for any point in the
interwell image can be written as:
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Pp[d)(x’ 2)] = Rect [¢/(dmax — Gmin)], )]

where dp,, and ¢y, are the maximum upward and down-
ward projection angles for a particular point (x, z) in the
interwell region. Figure 4 shows the 2-D spatial impulse
response of the angle-limited projection operator, P [$(x,
2)], for selected angular apertures. These impulse responses
were produced by digitally inverse transforming the pie-slice
velocity filter that defines the range of projection angles
illuminating a point in the interwell region (Hardage, 1992).
When the pie-slice filter is untapered [i.e., formulated like
equation (7)], the impulse is smeared primarily along the
slopes that correspond to the edges (b, and ;) of the
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filter in the transformed domain. In other words, the resolu-
tion is lowest in the directions that correspond to the edges
of the filter. The 2-D impulse response can be modified by
tapering the 2-D projection filter to reduce the edge effects.
Tapering essentially amounts to weighting the raypath an-
gles—deemphasizing the outlying angles. From window de-
sign theory, it is well known that with tapering, the smearing
of the impulse response at the limiting angles will be re-
duced, but the smearing at intermediate angles will be
increased. In other words, with tapering, the main lobe
width is increased while the side lobes are reduced. Figure 4
also shows that the amount of smearing increases as the
angular aperture decreases.
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FiG. 5. Equivalent width versus angle (plotted as a fraction of the well spacing) of selected angular apertures (phi) centered
about a horizontal projection.
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The magnitude of the smearing as a function of angular
aperture can be estimated by computing the equivalent width
of the impulse response along different angles that intersect
the center of the image. The equivalent width of a function is
the width of a rectangle with the same area as the function
(Bracewell, 1982). For our case, we can define the equivalent
width, E, as

Ey =f | flx, 2)|/A0, 0). ®)
L

where f(x, z) is the impulse response of the angle-limited
projection operator, and L is a line that intersects the center
of the impulse response at an angle ¢. Figure 5 shows E,, as
a fraction of the well spacing for several angular apertures
centered about ¢ = 0. Note that the smearing increascs as
the angular aperture decreases.

We can also characterize the angle-limited projection
operator by examining the analytic representation of its
impulse response. In the 2-D spatial frequency domain (&, ,
k,), the angle-limited projection operator can be written as
Rect [k, tan (Ad)/k, ], where Rect[ ]is defined above. The
inverse 2-D transform Imp(x, z) is then related to the
angular aperture A¢ through

Imp(x, z) ~ 8[ z tan (Ad)/x)/z, 9

where 8 is a 2-D blade function defined in Bracewell (1982).
The expression given in equation (9) confirms the aperture
dependence of the projection operator shown in Figure 5. As
the aperture increases, the influence of the 1/z term in
equation (9) becomes more pronounced because the 2-D
blade functions become more vertically oriented.
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By combining the analytic representation shown in equa-
tion 9, and the numerical results shown in Figure 5, we
derived an empirical relationship between the equivalent
width at the limiting projection angles E4_, the angular
aperture, Ad, and the well spacing, W:

Egeppy, = W/58.8 tan (Ad). 10)

This expression has a correlation coefficient of 0.997 with the
maximum equivalent widths shown in Figure 5. Equation (10)
is a measure of the spatial resolution of crosswell traveltime
tomography. Impulsive heterogeneities will be smeared,
primarily at the limiting projection angles, over a distance
with an equivalent width Ey_, . Equation (10} reempha-
sizes the necessity of having sufficient angular aperture at all
sectors of interest in the interwell plane. Interestingly, it is
not essential to have an extremely wide aperture [consistent
with the results of Menke (1984)], but it is extremely
important that the aperture be larger than a few degrees
everywhere. In cases with sparse ray sampling or severe ray
focusing (into, for example, high velocity layers), the angular
aperture may become very small in some sectors of the
interwell region. In these instances, spatial resolution will be
lowered dramatically. Figure 6 shows the angular aperture as
a function of position within the interwell region. Except for
an ellipsoidal zone at the very top and bottom of the image,
the reconstructed image should be well resolved because the
angular aperture is larger than a few degrees.

Another parameter that has been used to describe the
resolution of crosswell direct-arrival traveltime tomography
is the Fresnel zone of the direct arrival, approximated in
Williamson and Worthington (1993) as (MR, where R is
the path length of the direct arrival and A is the wavelength
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FiG. 6. Angular aperture as a function of position.
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of the direct arrival. In reality, the Fresnel zone is also
spatially variable, being smallest near the source and re-
ceiver wells and largest midway between the wells (Vasco
and Majer, 1993). Equating equation (10) with the analytic
representation of the Fresnel zone and assuming a horizontal
raypath [so that W can be replaced by R in equation (10)], we
find that the aperture-related resolution is approximately
equal to the Fresnel zone when

MR =[58.8 tan (Ad)] 2. an

For crosswell seismic data where the travelpath length is
around fifty wavelengths, the Fresnel zone is the limiting
factor dictating crosswell spatial resolution. However, when
the angular aperture becomes very small (less than about 10
degrees) or when the Fresnel zone is not assumed to limit the
resolution of traveltime tomography (for example, if first
breaks can be accurately estimated), the angular aperture
can be the limiting factor that controls spatial resolution of
crosswell traveltime tomography.

If we assume that the Fresnel zone limits the spatial
resolution that can be obtained with crosswell direct-arrival
traveltime tomography, then we must record data with a
center frequency of about 2000 Hz to obtain Fresnel zones at
normal oil and gas well spacings (about 600 m) that are equal
to typical surface seismic resolution (~20 m). If we wish to
obtain significantly higher resolution, we need even higher
frequencies. It is probably unrealistic to expect that these
frequencies can be propagated over such distances. Even if
the Fresnel zone does not limit the spatial resolution, we
would need angular apertures that are greater than about
45 degrees everywhere in the interwell region to obtain
spatial resolution that is significantly better than surface
seismic resolution. For long well spacings in particular,
these angular apertures may be difficult, if not impossible to
obtain, particularly at the base of the image.

CONCLUSIONS

Using the Fourier projection slice theorem, crosswell
tomography using direct arrivals can be formulated as a
series of truncated projections onto the interwell slowness
field over a limited range of projection angles. The effect of
projection truncation is to introduce nonuniqueness into the
solution through wavenumber smearing of the information.
This effect is identical to spectral leakage effects created
when a frequency spectrum is computed from a windowed
time series. The spectral leakage is greatest for those pro-
jections with the smallest width. Limited angular aperture
acts like a pie-slice velocity filter on the 2-D spatial spectrum
of an interwell heterogeneity. The impulse response of the

pie-slice velocity filter indicates the magnitude and direction
of information smearing in a tomographically-reconstructed
interwell image. For equally weighted angular projections,
information is primarily smeared along the limiting projec-
tion angles.

From this study, we found that the nonuniqueness intro-
duced by projection truncation was very small, and that the
aperture-related resolution was inversely proportional to
angular aperture and well spacing. We also showed that for
zones of the interwell region covered by a large angular
aperture, the Fresnel zone was the limiting factor in deter-
mining resolution. However, the angular aperture can be-
come very small at the edges of the survey in zones with
sparse ray coverage or in zones with ray focusing. The
information from these zones will be smeared in the recon-
structed tomogram. The effects of limited angular aperture
and limited projection aperture should be considered when
designing crosswell surveys and interpreting crosswell di-
rect-arrival traveltime tomograms. When .combined, the
Fresnel zone effect and the angular aperture effect indicate
that direct-arrival traveltime tomography will not, in general,
provide higher spatial resolution than surface reflection
surveys at normal (40 to 160 acre) oil and gas well spacings.
Crosswell imaging techniques that use the full waveform
such as crosswell reflection imaging or crosswell diffraction
tomography will be required to obtain resolution that is
significantly better than surface seismic data.
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